\(\int \frac {(d+e x)^5}{a d e+(c d^2+a e^2) x+c d e x^2} \, dx\) [1865]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 131 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {e \left (c d^2-a e^2\right )^3 x}{c^4 d^4}+\frac {\left (c d^2-a e^2\right )^2 (d+e x)^2}{2 c^3 d^3}+\frac {\left (c d^2-a e^2\right ) (d+e x)^3}{3 c^2 d^2}+\frac {(d+e x)^4}{4 c d}+\frac {\left (c d^2-a e^2\right )^4 \log (a e+c d x)}{c^5 d^5} \]

[Out]

e*(-a*e^2+c*d^2)^3*x/c^4/d^4+1/2*(-a*e^2+c*d^2)^2*(e*x+d)^2/c^3/d^3+1/3*(-a*e^2+c*d^2)*(e*x+d)^3/c^2/d^2+1/4*(
e*x+d)^4/c/d+(-a*e^2+c*d^2)^4*ln(c*d*x+a*e)/c^5/d^5

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {640, 45} \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {\left (c d^2-a e^2\right )^4 \log (a e+c d x)}{c^5 d^5}+\frac {e x \left (c d^2-a e^2\right )^3}{c^4 d^4}+\frac {(d+e x)^2 \left (c d^2-a e^2\right )^2}{2 c^3 d^3}+\frac {(d+e x)^3 \left (c d^2-a e^2\right )}{3 c^2 d^2}+\frac {(d+e x)^4}{4 c d} \]

[In]

Int[(d + e*x)^5/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(e*(c*d^2 - a*e^2)^3*x)/(c^4*d^4) + ((c*d^2 - a*e^2)^2*(d + e*x)^2)/(2*c^3*d^3) + ((c*d^2 - a*e^2)*(d + e*x)^3
)/(3*c^2*d^2) + (d + e*x)^4/(4*c*d) + ((c*d^2 - a*e^2)^4*Log[a*e + c*d*x])/(c^5*d^5)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d+e x)^4}{a e+c d x} \, dx \\ & = \int \left (\frac {e \left (c d^2-a e^2\right )^3}{c^4 d^4}+\frac {\left (c d^2-a e^2\right )^4}{c^4 d^4 (a e+c d x)}+\frac {e \left (c d^2-a e^2\right )^2 (d+e x)}{c^3 d^3}+\frac {e \left (c d^2-a e^2\right ) (d+e x)^2}{c^2 d^2}+\frac {e (d+e x)^3}{c d}\right ) \, dx \\ & = \frac {e \left (c d^2-a e^2\right )^3 x}{c^4 d^4}+\frac {\left (c d^2-a e^2\right )^2 (d+e x)^2}{2 c^3 d^3}+\frac {\left (c d^2-a e^2\right ) (d+e x)^3}{3 c^2 d^2}+\frac {(d+e x)^4}{4 c d}+\frac {\left (c d^2-a e^2\right )^4 \log (a e+c d x)}{c^5 d^5} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.02 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {c d e x \left (-12 a^3 e^6+6 a^2 c d e^4 (8 d+e x)-4 a c^2 d^2 e^2 \left (18 d^2+6 d e x+e^2 x^2\right )+c^3 d^3 \left (48 d^3+36 d^2 e x+16 d e^2 x^2+3 e^3 x^3\right )\right )+12 \left (c d^2-a e^2\right )^4 \log (a e+c d x)}{12 c^5 d^5} \]

[In]

Integrate[(d + e*x)^5/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(c*d*e*x*(-12*a^3*e^6 + 6*a^2*c*d*e^4*(8*d + e*x) - 4*a*c^2*d^2*e^2*(18*d^2 + 6*d*e*x + e^2*x^2) + c^3*d^3*(48
*d^3 + 36*d^2*e*x + 16*d*e^2*x^2 + 3*e^3*x^3)) + 12*(c*d^2 - a*e^2)^4*Log[a*e + c*d*x])/(12*c^5*d^5)

Maple [A] (verified)

Time = 2.81 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.53

method result size
norman \(\frac {e^{4} x^{4}}{4 c d}+\frac {e^{2} \left (a^{2} e^{4}-4 a c \,d^{2} e^{2}+6 c^{2} d^{4}\right ) x^{2}}{2 c^{3} d^{3}}-\frac {e^{3} \left (e^{2} a -4 c \,d^{2}\right ) x^{3}}{3 c^{2} d^{2}}-\frac {e \left (e^{6} a^{3}-4 d^{2} e^{4} a^{2} c +6 d^{4} e^{2} c^{2} a -4 c^{3} d^{6}\right ) x}{c^{4} d^{4}}+\frac {\left (a^{4} e^{8}-4 a^{3} c \,d^{2} e^{6}+6 a^{2} c^{2} d^{4} e^{4}-4 a \,c^{3} d^{6} e^{2}+c^{4} d^{8}\right ) \ln \left (c d x +a e \right )}{c^{5} d^{5}}\) \(201\)
default \(-\frac {e \left (-\frac {x^{4} c^{3} d^{3} e^{3}}{4}+\frac {\left (\left (e^{2} a -2 c \,d^{2}\right ) c^{2} d^{2} e^{2}-2 c^{3} d^{4} e^{2}\right ) x^{3}}{3}+\frac {\left (2 \left (e^{2} a -2 c \,d^{2}\right ) d^{3} e \,c^{2}-c d e \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+2 c^{2} d^{4}\right )\right ) x^{2}}{2}+\left (e^{2} a -2 c \,d^{2}\right ) \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+2 c^{2} d^{4}\right ) x \right )}{c^{4} d^{4}}+\frac {\left (a^{4} e^{8}-4 a^{3} c \,d^{2} e^{6}+6 a^{2} c^{2} d^{4} e^{4}-4 a \,c^{3} d^{6} e^{2}+c^{4} d^{8}\right ) \ln \left (c d x +a e \right )}{c^{5} d^{5}}\) \(232\)
risch \(\frac {e^{4} x^{4}}{4 c d}-\frac {e^{5} x^{3} a}{3 c^{2} d^{2}}+\frac {4 e^{3} x^{3}}{3 c}-\frac {2 e^{4} x^{2} a}{c^{2} d}+\frac {3 e^{2} d \,x^{2}}{c}+\frac {e^{6} x^{2} a^{2}}{2 c^{3} d^{3}}-\frac {e^{7} a^{3} x}{c^{4} d^{4}}+\frac {4 e^{5} a^{2} x}{c^{3} d^{2}}-\frac {6 e^{3} a x}{c^{2}}+\frac {4 e \,d^{2} x}{c}+\frac {\ln \left (c d x +a e \right ) a^{4} e^{8}}{c^{5} d^{5}}-\frac {4 \ln \left (c d x +a e \right ) a^{3} e^{6}}{c^{4} d^{3}}+\frac {6 \ln \left (c d x +a e \right ) a^{2} e^{4}}{c^{3} d}-\frac {4 d \ln \left (c d x +a e \right ) a \,e^{2}}{c^{2}}+\frac {d^{3} \ln \left (c d x +a e \right )}{c}\) \(239\)
parallelrisch \(\frac {3 c^{4} d^{4} e^{4} x^{4}-4 a \,c^{3} d^{3} e^{5} x^{3}+16 c^{4} d^{5} e^{3} x^{3}+6 a^{2} c^{2} d^{2} e^{6} x^{2}-24 a \,c^{3} d^{4} e^{4} x^{2}+36 c^{4} d^{6} e^{2} x^{2}+12 \ln \left (c d x +a e \right ) a^{4} e^{8}-48 \ln \left (c d x +a e \right ) a^{3} c \,d^{2} e^{6}+72 \ln \left (c d x +a e \right ) a^{2} c^{2} d^{4} e^{4}-48 \ln \left (c d x +a e \right ) a \,c^{3} d^{6} e^{2}+12 \ln \left (c d x +a e \right ) c^{4} d^{8}-12 a^{3} c d \,e^{7} x +48 a^{2} c^{2} d^{3} e^{5} x -72 a \,c^{3} d^{5} e^{3} x +48 c^{4} d^{7} e x}{12 c^{5} d^{5}}\) \(247\)

[In]

int((e*x+d)^5/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x,method=_RETURNVERBOSE)

[Out]

1/4/c/d*e^4*x^4+1/2/c^3/d^3*e^2*(a^2*e^4-4*a*c*d^2*e^2+6*c^2*d^4)*x^2-1/3/c^2/d^2*e^3*(a*e^2-4*c*d^2)*x^3-e*(a
^3*e^6-4*a^2*c*d^2*e^4+6*a*c^2*d^4*e^2-4*c^3*d^6)/c^4/d^4*x+(a^4*e^8-4*a^3*c*d^2*e^6+6*a^2*c^2*d^4*e^4-4*a*c^3
*d^6*e^2+c^4*d^8)/c^5/d^5*ln(c*d*x+a*e)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.58 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {3 \, c^{4} d^{4} e^{4} x^{4} + 4 \, {\left (4 \, c^{4} d^{5} e^{3} - a c^{3} d^{3} e^{5}\right )} x^{3} + 6 \, {\left (6 \, c^{4} d^{6} e^{2} - 4 \, a c^{3} d^{4} e^{4} + a^{2} c^{2} d^{2} e^{6}\right )} x^{2} + 12 \, {\left (4 \, c^{4} d^{7} e - 6 \, a c^{3} d^{5} e^{3} + 4 \, a^{2} c^{2} d^{3} e^{5} - a^{3} c d e^{7}\right )} x + 12 \, {\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} \log \left (c d x + a e\right )}{12 \, c^{5} d^{5}} \]

[In]

integrate((e*x+d)^5/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="fricas")

[Out]

1/12*(3*c^4*d^4*e^4*x^4 + 4*(4*c^4*d^5*e^3 - a*c^3*d^3*e^5)*x^3 + 6*(6*c^4*d^6*e^2 - 4*a*c^3*d^4*e^4 + a^2*c^2
*d^2*e^6)*x^2 + 12*(4*c^4*d^7*e - 6*a*c^3*d^5*e^3 + 4*a^2*c^2*d^3*e^5 - a^3*c*d*e^7)*x + 12*(c^4*d^8 - 4*a*c^3
*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*log(c*d*x + a*e))/(c^5*d^5)

Sympy [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.17 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=x^{3} \left (- \frac {a e^{5}}{3 c^{2} d^{2}} + \frac {4 e^{3}}{3 c}\right ) + x^{2} \left (\frac {a^{2} e^{6}}{2 c^{3} d^{3}} - \frac {2 a e^{4}}{c^{2} d} + \frac {3 d e^{2}}{c}\right ) + x \left (- \frac {a^{3} e^{7}}{c^{4} d^{4}} + \frac {4 a^{2} e^{5}}{c^{3} d^{2}} - \frac {6 a e^{3}}{c^{2}} + \frac {4 d^{2} e}{c}\right ) + \frac {e^{4} x^{4}}{4 c d} + \frac {\left (a e^{2} - c d^{2}\right )^{4} \log {\left (a e + c d x \right )}}{c^{5} d^{5}} \]

[In]

integrate((e*x+d)**5/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2),x)

[Out]

x**3*(-a*e**5/(3*c**2*d**2) + 4*e**3/(3*c)) + x**2*(a**2*e**6/(2*c**3*d**3) - 2*a*e**4/(c**2*d) + 3*d*e**2/c)
+ x*(-a**3*e**7/(c**4*d**4) + 4*a**2*e**5/(c**3*d**2) - 6*a*e**3/c**2 + 4*d**2*e/c) + e**4*x**4/(4*c*d) + (a*e
**2 - c*d**2)**4*log(a*e + c*d*x)/(c**5*d**5)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.56 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {3 \, c^{3} d^{3} e^{4} x^{4} + 4 \, {\left (4 \, c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{3} + 6 \, {\left (6 \, c^{3} d^{5} e^{2} - 4 \, a c^{2} d^{3} e^{4} + a^{2} c d e^{6}\right )} x^{2} + 12 \, {\left (4 \, c^{3} d^{6} e - 6 \, a c^{2} d^{4} e^{3} + 4 \, a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )} x}{12 \, c^{4} d^{4}} + \frac {{\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} \log \left (c d x + a e\right )}{c^{5} d^{5}} \]

[In]

integrate((e*x+d)^5/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="maxima")

[Out]

1/12*(3*c^3*d^3*e^4*x^4 + 4*(4*c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^3 + 6*(6*c^3*d^5*e^2 - 4*a*c^2*d^3*e^4 + a^2*c*d
*e^6)*x^2 + 12*(4*c^3*d^6*e - 6*a*c^2*d^4*e^3 + 4*a^2*c*d^2*e^5 - a^3*e^7)*x)/(c^4*d^4) + (c^4*d^8 - 4*a*c^3*d
^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*log(c*d*x + a*e)/(c^5*d^5)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.60 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {3 \, c^{3} d^{3} e^{4} x^{4} + 16 \, c^{3} d^{4} e^{3} x^{3} - 4 \, a c^{2} d^{2} e^{5} x^{3} + 36 \, c^{3} d^{5} e^{2} x^{2} - 24 \, a c^{2} d^{3} e^{4} x^{2} + 6 \, a^{2} c d e^{6} x^{2} + 48 \, c^{3} d^{6} e x - 72 \, a c^{2} d^{4} e^{3} x + 48 \, a^{2} c d^{2} e^{5} x - 12 \, a^{3} e^{7} x}{12 \, c^{4} d^{4}} + \frac {{\left (c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )} \log \left ({\left | c d x + a e \right |}\right )}{c^{5} d^{5}} \]

[In]

integrate((e*x+d)^5/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="giac")

[Out]

1/12*(3*c^3*d^3*e^4*x^4 + 16*c^3*d^4*e^3*x^3 - 4*a*c^2*d^2*e^5*x^3 + 36*c^3*d^5*e^2*x^2 - 24*a*c^2*d^3*e^4*x^2
 + 6*a^2*c*d*e^6*x^2 + 48*c^3*d^6*e*x - 72*a*c^2*d^4*e^3*x + 48*a^2*c*d^2*e^5*x - 12*a^3*e^7*x)/(c^4*d^4) + (c
^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8)*log(abs(c*d*x + a*e))/(c^5*d^5)

Mupad [B] (verification not implemented)

Time = 9.64 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.66 \[ \int \frac {(d+e x)^5}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=x^3\,\left (\frac {4\,e^3}{3\,c}-\frac {a\,e^5}{3\,c^2\,d^2}\right )+x\,\left (\frac {4\,d^2\,e}{c}-\frac {a\,e\,\left (\frac {6\,d\,e^2}{c}-\frac {a\,e\,\left (\frac {4\,e^3}{c}-\frac {a\,e^5}{c^2\,d^2}\right )}{c\,d}\right )}{c\,d}\right )+x^2\,\left (\frac {3\,d\,e^2}{c}-\frac {a\,e\,\left (\frac {4\,e^3}{c}-\frac {a\,e^5}{c^2\,d^2}\right )}{2\,c\,d}\right )+\frac {\ln \left (a\,e+c\,d\,x\right )\,\left (a^4\,e^8-4\,a^3\,c\,d^2\,e^6+6\,a^2\,c^2\,d^4\,e^4-4\,a\,c^3\,d^6\,e^2+c^4\,d^8\right )}{c^5\,d^5}+\frac {e^4\,x^4}{4\,c\,d} \]

[In]

int((d + e*x)^5/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2),x)

[Out]

x^3*((4*e^3)/(3*c) - (a*e^5)/(3*c^2*d^2)) + x*((4*d^2*e)/c - (a*e*((6*d*e^2)/c - (a*e*((4*e^3)/c - (a*e^5)/(c^
2*d^2)))/(c*d)))/(c*d)) + x^2*((3*d*e^2)/c - (a*e*((4*e^3)/c - (a*e^5)/(c^2*d^2)))/(2*c*d)) + (log(a*e + c*d*x
)*(a^4*e^8 + c^4*d^8 - 4*a*c^3*d^6*e^2 - 4*a^3*c*d^2*e^6 + 6*a^2*c^2*d^4*e^4))/(c^5*d^5) + (e^4*x^4)/(4*c*d)